news    views    podcast    learn    |    about    contribute     republish    

robot

interview by   -   August 19, 2018

In this episode, Audrow Nash interviews Chris McCool and Chris Lehnert about different projects that relate to agriculture at the Queensland University of Technology. McCool speaks about a large robot for weed management in fields. The robot uses Real-time kinematic GPS (very accurate) and a camera with deep learning to recognize various types of plants. Lehnert speaks about a robot to harvest sweet peppers. The robot first grabs on to the sweet pepper with a suction cup and then uses a small saw to cut the fruit from the bush. Chris speaks about using their method for other crops, how their robot does in terms of deployment, and the future of agriculture.

 

interview by   -   June 23, 2018

In this episode, Audrow Nash interviews Juxi Leitner, a Postdoctoral Research Fellow at QUT; and Nicholas Panitz, Ben Wilson, and James Brett, from CSIRO.

Leitner speaks about the Amazon Picking challenge, a challenge to advance the state of robotic grasping, and their robot which won the challenge in 2017. Their robot is similar to a cartesian 3D printer in form and uses either a suction cup or a pinch gripper for grabbing objects. Their robot has a depth camera and uses a digital scale to determine if an object has been picked up successfully. Leitner discusses what their team did differently from other teams that helped them win the competition.

Panitz, Wilson, and Brett speak about their hexapod robots. Their hexapods are for several purposes, such as environmental monitoring and remote inspection. They choose to use hexapods because they are statically stable. They discuss the design of their hexapods and how research works at Commonwealth Scientific and Industrial Research Organization, or CSIRO.

interview by   -   June 8, 2018

In this episode, Audrow Nash interviews Jonathan W. Hurst, Associate Professor of Mechanical Engineering at Oregon State University and CTO and co-founder of Agility Robotics, about legged locomotion, about a bipedal robot, called “Cassie.” Hurst discusses Cassie’s design, what types of research questions Cassie should allow, and applications of walking robots, including package delivery. 

interview by   -   February 18, 2018



In this episode, Abate interviews Peter Harris from HighRes Biosolutions about automation in the field of drug discovery. At HighRes Biosolutions they are developing modular robotic systems that work alongside scientists to automate laboratory tasks. Because the requirements of each biomedical research laboratory are so varied, the robotic systems are specifically tailored to meet the requirements of each lab.

interview by   -   October 14, 2017



In this episode, Audrow Nash interviews Chris Gerdes, Professor of Mechanical Engineering at Stanford University, about designing high-performance autonomous vehicles. The idea is to make vehicles safer, as Gerdes says, he wants to “develop vehicles that could avoid any accident that can be avoided within the laws of physics.”

In this interview, Gerdes discusses developing a model for high-performance control of a vehicle; their autonomous race car, an Audi TTS named ‘Shelley,’ and how its autonomous performance compares to ameteur and professional race car drivers; and an autonomous, drifting Delorean named ‘MARTY.’

A newly developed vine-like robot can grow across long distances without moving its whole body. It could prove useful in search and rescue operations and medical applications.

Update: The response to Tertill’s crowdfunding campaign has amazed and delighted us! Pledges totalling over $250,000 have come from 1000+ backers. We’re shipping to all countries, with over a fifth of Tertill’s supporters coming from outside the United States. But the end is near; Tuesday (11 July) is the last full day of the campaign. After that Tertill’s discounted campaign price will no longer be available and delivery in time for next year’s (northern hemisphere) growing season cannot be assured.

Franklin Robotics has launched a Kickstarter campaign for Tertill, their solar-powered, garden-weeding robot.

A new robot under development can send information on the stiffness, look and feel of a patient to a doctor located kilometres away. Image credit: Accrea

A robotic doctor that can be controlled hundreds of kilometres away by a human counterpart is gearing up for action. Getting a check-up from a robot may sound like something from a sci-fi film, but scientists are closing in on this real-life scenario and have already tested a prototype.

by   -   June 21, 2017

To celebrate 20 years of RoboCup, the Federation is launching a video series featuring each of the leagues. In our final set of videos, we are featuring the Junior league.

by   -   June 20, 2017

Judging by the frequency that self-driving cars are mentioned in scientific discussions and the media, they are not only the next big thing, but might actually take over as our main means of transportation. Traditional industries like the railways, on the other hand, seem to have lost that race already. But what if new technologies, such as Internet of Things (IoT) devices and Artificial Intelligence (AI), were not only used to create new transportation modes, but to transform old ones as well?

Harvard scientists use simple materials to create semi-soft machines that walk like insects.

Prof. Pierre Dillenbourg and the team from the Computer-Human Interaction in Learning and Instruction (CHILI) Lab, explain how they are building robots to use in the classrooms of tomorrow. It is CHILI’s goal to deeply integrate Human-Computer Interaction (HCI) and learning sciences, especially in addressing practical problems in learning, teaching, and instruction.

by   -   June 14, 2017

To celebrate 20 years of RoboCup, the Federation is launching a video series featuring each of the leagues. This week, we look at being part of the RoboCupIndustrial league.

da Vinci Si System with single-site instrumentation ©2016, Intuitive Surgical, Inc.

No matter how great a surgeon is, robotic assistance can bring a higher level of precision to the operating table. The ability to remotely operate a robot that can hold precision instruments greatly increases the accuracy of surgical procedures like thoracoscopic surgery, which is used to treat lung cancer.

It is unclear if Masayoshi Son, Chairman of Softbank, was one of the 17 million YouTube viewers of Boston Dynamic’s Big Dog before acquiring the company for an undisclosed amount this past Thursday. What is clear is the acquisition of Boston Dynamics by Softbank is a big deal. Softbank’s humanoid robot Pepper is trading up her dainty wheels for a pair of sturdy legs.



Presented work at IROS 2018 (Part 1 of 3)
November 12, 2018


Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign