Robohub.org
 

ManyEars: open source framework for sound processing


by
08 February 2013



share this:

One of the latest papers in the Journal Autonomous Robots presents ManyEars, an open framework for robot audition.

Making robots that are able to localize, track and separate multiple sound sources, even in noisy places, is essential for their deployment in our everyday environments. This could for example allow them to process human speech, even in crowded places, or identify noises of interest and where they came from. Unlike vision however, there are few software and hardware tools that can easily be integrated to robotic platforms.

The ManyEars open source framework allows users to easily experiment with robot audition. The software, which can be downloaded here, is compatible with ROS (Robot Operating System). Its modular design makes it possible to interface with different microphone configurations and hardware, thereby allowing the same software package to be used for different robots. A Graphical User Interface is provided for tuning parameters and visualizing information about the sound sources in real-time. The figure below illustrates the architecture of the software library. It is composed of five modules: Preprocessing, Localization, Tracking, Separation and Postprocessing.
Structure
To make use of the software, a computer, a sound card and microphones are required. ManyEars can be used with commercially available sound cards and microphones. However, commercial sound cards present limitations when used for embedded robotic applications: they can be expensive and have functionalities which are not required for robot audition. They also require significant amount of power and size. For these reasons, the authors introduce a customized microphone board and sound card available as an open hardware solution that can be used on your robot and interfaced with the software package. The board uses an array of microphones, instead of only one or two, thereby allowing a robot to localize, track, and separate multiple sound sources.

The framework is demonstrated using the microphones array on the IRL-1 robot shown below. The placement of the microphones is marked by red circles. Results show that the robot is able to track two human speakers producing uninterrupted speech sequences, even when they are moving, and crossing paths. For videos of the IRL-1, check out the lab’s YouTube Channel.
IRL-1
For more information, you can read the following paper:
The ManyEars open framework, F. Grondin, D. Létourneau, F. Ferland, V. Rousseau, F. Michaud, Autonomous Robots – Springer US, Feb 2013



tags: , , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence