Robohub.org
 

Plug-and-play artificial compound eye for robotic applications

by
20 May 2013



share this:
compound_eye

Flies have small brains that would not be able to process high-resolution images such as those that we see with our own eyes. Instead, they’ve perfected the use of compound eyes, composed of a dense mosaic of tiny eye-like structures called ommatidia. Each ommatidium consists of a microlense that focuses light from a specific section of the insect’s field of view onto an independent set of photoreceptors. Think of it as having many low-resolution cameras pointing in different directions. The result is a vision system with low spatial resolution (i.e. it can’t see details), but a wide field of view (i.e. it can see all around). By comparing information across the different ommatidia, flies can extract temporal information useful for detecting motion. This motion information, also called optic flow, is what allows flies to navigate, take-off, land and avoid obstacles while using very little processing power.

Inspired by the fly’s vision system, the Curved Artificial Compound Eye (CurvACE) published today in the prestigious journal PNAS can enable a large range of applications that require motion detection using a small plug-and-play device. As shown in the video below, you could use these sensors to control small robots navigating an environment, even in the dark, or equip a small autonomous flying robot with limited payload. Other applications include home automation, surveillance, medical instruments, prosthetic devices, and smart clothing.

The artificial compound eye features a panoramic, hemispherical field of view with a resolution identical to that of the fruitfly in less than 1 mm thickness. Additionally, it can extract images 3 times faster than a fruitfly, and includes neuromorphic photoreceptors that allow motion perception in a wide range of environments from a sunny day to moon light. To build the sensors, the researchers align an array of microlenses, an array of photodetectors, and a flexible PCB that mechanically supports and electrically connects the ensemble. The panoramic field of view is provided by dicing the rigid parts of the ommatidia, thereby allowing the mechanical bending of the sensor. The necessary components for signal readout and processing are embedded in the curvature of the sensor.
fabrication

CurvACE is a European project bringing together the Laboratory of Intelligent Systems in EPFL (Switzerland), the Laboratory of Biorobotics in the University of Aix-Marseille (France), the Fraunhofer Institute of Applied Optics and Precision Engineering (Germany), and the Laboratory of Cognitive Sciences in the University of Tübingen (Germany).

Don’t miss the next ROBOTS podcast for my interview with the researchers behind this new artificial compound eye.



tags: , , , , , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

Swiss Robotics Day showcases innovations and collaborations between academia and industry

The 2021 Swiss Robotics Day marked the beginning of NCCR Robotics’s final year. The project, launched in 2010, is on track to meet all its scientific goals in the three areas of wearable, rescue and educational robotics, while continuing to focus on supporting spin-offs, advancing robotics education and improving equality of opportunities for all robotics researchers.
10 May 2022, by

Afreez Gan: Open Source Robot Dog, Kickstarter, and Home Robots | Sense Think Act Podcast #18

In this episode, Audrow Nash speaks to Afreez Gan, who is the founder and CEO of MangDang; MangDang is a Chinese startup that makes Minipupper, an open source robot dog that uses the Robot Operating S...





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association