Robohub.org
 

Robotic dragonflies take to the sky (with your help)


by
08 November 2012



share this:

Is it a bird? Is it a plane? No, it’s the Robot Dragonfly from TechJect. Developed over four years by researchers at the Georgia Institute of Technology for the US Air Force, the researchers are now investigating commercial and consumer opportunities through their recently released campaign on the crowd-funding website, IndieGoGo.

True consumer (as opposed to military or hobbyist) UAV’s first truly “took to the skies” with the release of Parrot’s iPhone-controlled AR.Drone in 2010, which has, for the last two years, been relatively unchallenged. Now, with the help of crowd-sourced funding, new takes on consumer UAVs are emerging, some more playful, and some more hobbyist oriented.

Few however are as innovative as the Robot Dragonfly, whose patented and bio-inspired drive/flight system gives it the ability to hover like a helicopter, and dynamically switch to a “gliding mode”, more like a conventional fixed-wing craft. As with all crowd-sourced campaigns, the Robot Dragonfly is not yet a finished or proven product, however if product simulations and current prototypes are to be believed (both shown in following video), its four wings and light weight (25g) should offer an interesting array of dynamic movements and flight possibilities not achievable with conventional UAV designs.

The following promotional video was released by the group along with the crowd-funding campaign. This video gives an overview of the Robot Dragonfly’s development at the Georgia Institute of Technology, takes a look at the existing research prototypes and shows simulations of the final version performing in a number of different situations.

The group are targeting a broad range of markets with their initial release and have suggested applications in Augmented-Reality Gaming, Aerial Photography, Telepresence, Personal and Commercial Security, and in the Military. For more information, see the Robot Dragonfly IndieGoGo campaign, where team-members are actively answering questions and responding to suggestions.



tags: , , , , , , , , , , ,


Mike Hamer





Related posts :



Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence