Robohub.org
podcast
 

Curved Artificial Compound Eye with Ramon Pericet Camara and Michal Dobrzynski

Curvace         
by
31 May 2013



share this:

In this episode, we speak with Ramon Pericet and Michal Dobrzynski from EPFL about their Curved Artificial Compound Eye (CurvACE) published in the Proceedings of the National Academy of Sciences. Inspired by the fly’s vision system, their sensor can enable a large range of applications that require motion detection using a small plug-and-play device. As shown in the video below, you could use these sensors to control small robots navigating an environment, even in the dark, or equip a small autonomous flying robot with limited payload. Other applications include home automation, surveillance, medical instruments, prosthetic devices, and smart clothing.

The artificial compound eye features a panoramic, hemispherical field of view with a resolution identical to that of the fruitfly in less than 1 mm thickness. Additionally, it can extract images 3 times faster than a fruitfly, and includes neuromorphic photoreceptors that allow motion perception in a wide range of environments from a sunny day to moon light. To build the sensors, the researchers align an array of microlenses, an array of photodetectors, and a flexible PCB that mechanically supports and electrically connects the ensemble.

This work is part of the European Project Curvace which brings together a total of 15 people from four partners in France, Germany and Switzerland.

compound_eye

You can read our full coverage here.

Ramon Pericet Camara
Ramon Pericet Camara is the scientific coordinator for the CurvACE project and a postdoctoral researcher at the Laboratory of Intelligent Systems at EPFL. His research interests are oriented towards bio-inspired robotics, soft robotics, and soft-condensed matter physics.

Ramon received a Masters degree in Physics in 2000 from the University of Granada (Spain) and a PhD in Multidisciplinary Research from the University of Geneva (Switzerland) in 2006. Subsequently, he was granted a fellowship for prospective researchers from the Swiss National Science Foundation to join the Max Planck Institute for Polymer Research in Mainz (Germany).

Michal Dobrzynski
Michal Dobrzynski is a PhD student at the Laboratory of Intelligent Systems at EPFL. He obtained his master degree in Automatic Control and Robotics in 2006 from the Warsaw Technical University (Poland). He then joined the SGAR S.L. Company (Barcelona, Spain) as a Robot and PLC Software Engineer where his work focused on industrial robots and automatic lines programming and visualization. Next, in 2007, he joined a Numerical Method Laboratory at the University Politechnica of Bucharest (Romania) where he spent two years working in the FP6 “Early Stage Training 3″ project as a Researcher.

Links:



tags: , , , ,


Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.
Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.





Related posts :



Flocks of assembler robots show potential for making larger structures

Researchers make progress toward groups of robots that could build almost anything, including buildings, vehicles, and even bigger robots.
25 November 2022, by

Holiday robot wishlist for/from Women in Robotics

Are you looking for a gift for the women in robotics in your life? Or the up and coming women in robotics in your family? Perhaps these suggestions from our not-for-profit Women in Robotics organization will inspire!
24 November 2022, by and

TRINITY, the European network for Agile Manufacturing

The Trinity project is the magnet that connects every segment of agile with everyone involved, creating a network that supports people, organisations, production and processes.
20 November 2022, by

Fighting tumours with magnetic bacteria

Researchers at ETH Zurich are planning to use magnetic bacteria to fight cancerous tumours. They have now found a way for these microorganisms to effectively cross blood vessel walls and subsequently colonise a tumour.
19 November 2022, by

Combating climate change with a soft robotics fish

We have fabricated a 3D printed, cable-actuated wave spring tail made from soft materials that can drive a small robot fish.
17 November 2022, by

#IROS2022 best paper awards

Here we bring you the papers that received an award this year at IROS in case you missed them.
14 November 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association