Robohub.org
 

Surgical micro-robot swarms: Science fiction, or realistic prospect?

by
09 March 2015



share this:
"Auklet flock Shumagins 1986" by D. Dibenski -Wikimedia

“Auklet flock Shumagins 1986” by D. Dibenski -Wikimedia

Imagine a swarm of microscopic robots that we inject into the vascular system: the swarm swims to the source of the problem, then either delivers therapeutics or undertakes microsurgery directly.

That was how I opened a short invited talk at the Royal Society of Medicine on 5 February, at a meeting themed The Future of Robotics in Surgery. The talk was a wonderful opportunity for me to introduce swarm intelligence and speculate on the likelihood of surgical micro-robot swarms, while at the same time learning about robot surgery. Here are the slides from my talk (with links to YouTube videos where available).

The talk was in three parts.

First I introduced swarm intelligence, and its artificial counterpart swarm robotics. I showed, with examples from two of my students, how – with very simple rules – a swarm of robots can keep together as a swarm, while moving toward a beacon. Then, with a phagocyte-like behaviour, encapsulate the beacon. In our case these were lab robots moving toward an infra-red beacon, but it’s not hard to imagine the same behavioural rules in a microscopic swarm swimming toward the source of a chemical marker (chemotaxis). I then gave two examples of the state of the art in swarm robotics: SYMBRION and (my current favourite) TERMES. I wanted to illustrate emergent physical interaction, in these two cases swarm self-assembly and swarm construction, respectively.

In part two I outlined what is by far the biggest problem: actually engineering robots at the micro-scale. Here I drew upon the examples from my book Robotics: a very short introduction; a section called A swarm of medical microrobots.  Start with cm sized robots. These already exist in the form of pillbots and I reference the work of Paolo Dario’s lab in this direction. Then get 10 times smaller to mm sized robots. Here we’re at the limit of making robots with conventional mechatronics. The almost successful I-SWARM project prototyped remarkable robots measuring 4 x 4 x 3mm. But now shrink by another 3 orders of magnitude to microbots, measured in micrometers. This is how small robots would have to be in order to swim through and access (most of) the vascular system. Here we are far beyond conventional materials and electronics, but amazingly work is going on to control bacteria. In the example I give from the lab of Sylvain Martel, swarms of magnetotactic bacteria are steered by an external magnetic field and, interestingly, tracked in an MRI scanner.

In the final part of my talk I introduce the work of my colleague Sabine Hauert, on swarms of nanoparticles for cancer nanomedicine. These 5 – 500nm particles are controlled by changing their body size, material, coating and cargo so – in true swarm fashion – the way the nanoparticle swarm moves and interacts with much larger normal and tumour cells is an emergent property of the way the nanoparticles individually interact and cooperate. Sabine and her collaborators have created an online tool called NanoDoc, which allows anyone to edit the design of nanoparticles then run simulations to see how their designs perform. In this way the task of searching the huge design space is crowd-sourced. In parallel Sabine is also running mesoscale embodied simulations, using the Harvard Kilobots.

I concluded by suggesting that engineering micro or nanobots is not the only major challenge. At least as important are: (a) how would you program the swarm, and (b) how would such a swarm be approved for clinical use? But a deeply interesting question is the nature of the human-swarm interface. If a swarm of surgical microbots should become a practical proposition would we treat the swarm as a microscopic instrument under the surgeon’s control, or a smart drug that does surgery?

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by

Robot Talk Episode 63 – Ayse Kucukyilmaz

In the latest episode of the Robot Talk podcast, Claire chatted to Ayse Kucukyilmaz from the University of Nottingham about collaboration, conflict and failure in human-robot interactions.
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association