news    views    podcast    learn    |    about    contribute     republish    


by   -   January 25, 2019
OroBOT – Credit: Maxime Marendaz

Using the fossil and fossilized footprints of a 300-million-year-old animal, scientists from EPFL and Humboldt-Universität zu Berlin have identified the most likely gaits of extinct animals and designed a robot that can recreate an extinct animal’s walk. This study can help researchers better understand how vertebrate locomotion evolved over time.

by   -   January 17, 2019

In trials, the ResiBot robot learned to walk again in less than two minutes after one of its legs was removed. Image credit – Antoine Cully / Sorbonne University

By Gareth Willmer

It’s part of a field of work that is building machines that can provide real-time help using only limited data as input. Standard machine-learning algorithms often need to process thousands of possibilities before deciding on a solution, which may be impractical in pressurised scenarios where fast adaptation is critical.

by   -   January 7, 2019
Remote presence technology enables a medic to perform an ultrasound at the scene of accident.
(University of Saskatchewan), Author provided

Ivar Mendez, University of Saskatchewan

It is the middle of the winter and a six-month-old child is brought with acute respiratory distress to a nursing station in a remote community in the Canadian North.

by   -   December 25, 2018

Thanks to all for sending your holiday videos, here’s the last of this year’s series. Merry Christmas!

by   -   December 16, 2018

A research team from the University of Zurich and EPFL has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

by   -   December 4, 2018

By Chelsea Finn∗, Frederik Ebert∗, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine

With very little explicit supervision and feedback, humans are able to learn a wide range of motor skills by simply interacting with and observing the world through their senses. While there has been significant progress towards building machines that can learn complex skills and learn based on raw sensory information such as image pixels, acquiring large and diverse repertoires of general skills remains an open challenge. Our goal is to build a generalist: a robot that can perform many different tasks, like arranging objects, picking up toys, and folding towels, and can do so with many different objects in the real world without re-learning for each object or task.

by   -   November 4, 2018

Researchers from EPFL and Stanford have developed small drones that can land and then move objects that are 40 times their weight, with the help of powerful winches, gecko adhesives and microspines.

by , and   -   October 9, 2018

From driving rovers on Mars to improving farm automation for Indian women, once again we’re bringing you a list of 25 amazing women in robotics! These women cover all aspects of the robotics industry, both research, product and policy. They are founders and leaders, they are investigators and activists. They are early career stage and emeritus. There is a role model here for everyone! And there is no excuse – ever – not to have a woman speaking on a panel on robotics and AI.

by , and   -   October 6, 2018

The deployment of connected, automated, and autonomous vehicles presents us with transformational opportunities for road transport. These opportunities reach beyond single-vehicle automation: by enabling groups of vehicles to jointly agree on maneuvers and navigation strategies, real-time coordination promises to improve overall traffic throughput, road capacity, and passenger safety. However, coordinated driving for intelligent vehicles still remains a challenging research problem, and testing new approaches is cumbersome. Developing true-scale facilities for safe, controlled vehicle testbeds is massively expensive and requires a vast amount of space. One approach to facilitating experimental research and education is to build low-cost testbeds that incorporate fleets of down-sized, car-like mobile platforms.

by and   -   September 26, 2018
DelFly Nimble in forward flight. Credits: TU Delft

Bio-inspired flapping wing robots hold a great potential. The promise is that they can fly very efficiently even at smaller scales, while being able to fly fast, hover, and make quick maneuvers. We now present a new flapping wing robot, the DelFly Nimble, that is so agile that it can even accurately mimic the high-speed escape maneuvers of fruit flies. In the scientific article, published in Science, we show that the robot’s motion resembles so much that of the fruit fly that it allowed us to better understand the dynamics of fruit flies during escape maneuvers. Here at Robohub, we wish to give a bit more background about the motivation and process of how we got to the final design of this robot, and what we think the future may bring.

by   -   August 29, 2018

If you follow the robotics community on the twittersphere, you’ll have noticed that Rodney Brooks is publishing a series of essays on the future of robotics and AI which has been gathering wide attention.

by   -   August 29, 2018

Will a robot take my job?
Media headlines often speculate about robots taking our jobs. We’re told robots will replace swaths of workers from taxi drivers to caregivers. While some believe this will lead to a utopian future where humans live a life of leisure provided for by robots, the dystopian view sees automation as a risk to the very fabric of society. Such hopes and fears have preceded the introduction of new technologies for centuries – the Luddites for example destroyed weaving machines in the 19th century to protest the automation of their sector. What we see, time and time again, is that technology drives productivity and wealth, which translates to more and better jobs down the line. But can we expect the same to happen with robots, or is this time different?

by   -   August 9, 2018

A new fabrication process enables the creation of soft robots at the millimeter scale with features on the micrometer scale as shown here with the example of a small soft robotic peacock spider with moving body parts and colored eyes and abdomens. Credit: Wyss Institute at Harvard University

By Benjamin Boettner

Roboticists are envisioning a future in which soft, animal-inspired robots can be safely deployed in difficult-to-access environments, such as inside the human body or in spaces that are too dangerous for humans to work, in which rigid robots cannot currently be used. Centimeter-sized soft robots have been created, but thus far it has not been possible to fabricate multifunctional flexible robots that can move and operate at smaller size scales.

by   -   August 9, 2018

By John Miller

An earlier version of this post was published on Off the Convex Path. It is reposted here with the author’s permission.

In the last few years, deep learning practitioners have proposed a litany of different sequence models. Although recurrent neural networks were once the tool of choice, now models like the autoregressive Wavenet or the Transformer are replacing RNNs on a diverse set of tasks. In this post, we explore the trade-offs between recurrent and feed-forward models.

by   -   July 25, 2018

Ever since the première of “Steamboat Willie” in 1928, The Walt Disney Company has pushed the envelope of imagination. Mickey Mouse is still more popular worldwide than any single human actor. In fact, from that one cel an entire world of animated characters was born. The entertainment powerhouse demonstrated last week a new generation of theatrics with a flying robot-like stuntman (hero pause and all) that is destined to become a leading player in the age of autonomy.

← previous page        ·         next page →

Solid State Lidar – the 3D Camera
June 29, 2020

Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign