news    views    podcast    learn    |    about    contribute     republish    

Driving, flying, and climbing in a sand and gravel pit

July 18, 2016
NCFRN Field Trials 2016. Photo: Tim Barfoot
NCFRN Field Trials 2016. Grizzly in challenging lighting. Photo: Tim Barfoot

In June, the University of Toronto (as part of the NSERC Canadian Field Robotics Network) carried out a set of field trials at an old sand and gravel pit in Sudbury, Ontario, Canada. This involved three main experiments:

  1. A new version of our Visual Teach and Repeat (VT&R) approach to vision-only route following,
  2. Aerial surveys of the site using fixed-wing unmanned aerial vehicles, and
  3. A tethered robot design for mapping steep surfaces such as cliffs.

In the VT&R experiments, we taught our robot a 5 km network of interconnected paths, then carried out 120 km of autonomous repeats on these paths using only stereo vision for feedback. The below video shows some sections being repeated. Our new technique, dubbed VT&R 2.0, is a significant advance over our earlier work in that (i) it uses a Multi­-Experience Localization (MEL) technique to match live images to several previous experience of a path (making it more robust to appearance change), and (ii) is able to do place-­dependent terrain assessment to safeguard the robot and people around it, even in rough terrain with vegetation.

The team also captured some great images of the various experiments.  All images copyright Tim Barfoot or Francois Pomerleau.

grizzly2

grizzly3

grizzly4

grizzly5

All photos can be viewed here.

This video is associated with the following papers:

Paton M, MacTavish K A, Warren M, and Barfoot T D. “Bridging the Appearance Gap: Multi-Experience Localization for Long-Term Visual Teach and Repeat”. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9-14 October 2016

Berczi L P and Barfoot T D. “It’s Like Déjà Vu All Over Again: Learning Place-Dependent Terrain Assessment for Visual Teach and Repeat”. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9-14 October 2016

Tim Barfoot Dr. Timothy Barfoot (Professor, University of Toronto Institute for Aerospace Studies -- UTIAS) holds the Canada Research Chair (Tier II) in Autonomous Space Robotics and works in the area of guidance, navigation, and control of mobile robots for space and terrestrial applications. .. read more


comments powered by Disqus


Presented work at IROS 2018 (Part 1 of 3)
November 12, 2018

Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign