Robohub.org
 

Mind control: Correcting robot mistakes using EEG brain signals


by
06 March 2017



share this:

The feedback system enables human operators to correct the robot’s choice in real-time – Jason Dorfman, MIT CSAIL

For robots to do what we want, they need to understand us. Too often, this means having to meet them halfway: teaching them the intricacies of human language, for example, or giving them explicit commands for very specific tasks. But what if we could develop robots that were a more natural extension of us and that could actually do whatever we are thinking?

A team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Boston University is working on this problem, creating a feedback system that lets people correct robot mistakes instantly with nothing more than their brains.

Using data from an electroencephalography (EEG) monitor that records brain activity, the system can detect if a person notices an error as a robot performs an object-sorting task. The team’s novel machine-learning algorithms enable the system to classify brain waves in the space of 10 to 30 milliseconds.

While the system currently handles relatively simple binary-choice activities, the paper’s senior author says that the work suggests that we could one day control robots in much more intuitive ways.

“Imagine being able to instantaneously tell a robot to do a certain action, without needing to type a command, push a button or even say a word,” says CSAIL director Daniela Rus. “A streamlined approach like that would improve our abilities to supervise factory robots, driverless cars and other technologies we haven’t even invented yet.”

In the current study the team used a humanoid robot named “Baxter” from Rethink Robotics, the company led by former CSAIL director and iRobot co-founder Rodney Brooks.

The paper presenting the work was written by BU PhD candidate Andres F. Salazar-Gomez, CSAIL PhD candidate Joseph DelPreto, and CSAIL research scientist Stephanie Gil under the supervision of Rus and BU professor Frank H. Guenther.  The paper was recently accepted to the IEEE International Conference on Robotics and Automation (ICRA) taking place in Singapore this May.

Past work in EEG-controlled robotics has required training humans to “think” in a prescribed way that computers can recognize. For example, an operator might have to look at one of two bright light displays, each of which corresponds to a different task for the robot to execute.

The downside to this method is that the training process and the act of modulating one’s thoughts can be taxing, particularly for people who supervise tasks in navigation or construction that require intense concentration.

Rus’ team wanted to make the experience more natural. To do that, they focused on brain signals called “error-related potentials” (ErrPs), which are generated whenever our brains notice a mistake. As the robot indicates which choice it plans to make, the system uses ErrPs to determine if the human agrees with the decision.

The team uses EEG brain signals to detect if the person notices a mistake – Jason Dorfman, MIT CSAIL

“As you watch the robot, all you have to do is mentally agree or disagree with what it is doing,” says Rus. “You don’t have to train yourself to think in a certain way –  the machine adapts to you, and not the other way around.”

ErrP signals are extremely faint, which means that the system has to be fine-tuned enough to both classify the signal and incorporate it into the feedback loop for the human operator.

In addition to monitoring the initial ErrPs, the team also sought to detect “secondary errors” that occur when the system doesn’t notice the human’s original correction.

“If the robot’s not sure about its decision, it can trigger a human response to get a more accurate answer,” says Gil. “These signals can dramatically improve accuracy, creating a continuous dialogue between human and robot in communicating their choices.”

The feedback system enables human operators to correct the robot’s choice in real-time – Jason Dorfman, MIT CSAIL2

While the system cannot yet recognize secondary errors in real time, Gil expects the model to be able to improve to upwards of 90 percent accuracy once it can.

In addition, since ErrP signals have been shown to be proportional to how egregious the robot’s mistake is, the team believes that future systems could extend to more complex multiple-choice tasks.

Salazar-Gomez notes that the system could even be useful for people who can’t communicate verbally: a task like spelling could be accomplished via a series of several discrete binary choices, which he likens to an advanced form of the blinking that allowed stroke victim Jean-Dominique Bauby to write his memoir “The Diving Bell and the Butterfly.”

“This work brings us closer to developing effective tools for brain-controlled robots and prostheses,” says Wolfram Burgard, a professor of computer science at the University of Freiburg who was not involved in the research. “Given how difficult it can be to translate human language into a meaningful signal for robots, work in this area could have a truly profound impact on the future of human-robot collaboration.”

Read the paper here.

The project was funded in part by Boeing and the National Science Foundation.


If you enjoyed this article from CSAIL, you might also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , , , ,


CSAIL MIT The Computer Science and Artificial Intelligence Laboratory – known as CSAIL ­– is the largest research laboratory at MIT and one of the world’s most important centers of information technology research.
CSAIL MIT The Computer Science and Artificial Intelligence Laboratory – known as CSAIL ­– is the largest research laboratory at MIT and one of the world’s most important centers of information technology research.





Related posts :



Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence