Robohub.org
ep.

335

podcast
 

Autonomous Aircraft by Xwing with Maxime Gariel

Xwing         
by
12 July 2021



share this:


xwing autonomous aircraft

Abate talks to Maxime Gariel, CTO of Xwing about the autonomous flight technology they are developing.

At Xwing, they are converting traditional aircraft into remotely operated aircraft. They do this by retrofitting planes with multiple sensors including cameras, radar, and lidar, and by developing sensor fusion algorithms to allow their planes to understand the world around them, using highly accurate perception algorithms.

Xwing’s autonomous flight technology allows a plane to taxi in the airport, takeoff, fly to a destination, avoid airborne and ground threats, and land, all without any human input. This technology not only enables autonomous flight but may also enhance the safety of manned aircraft by improving a plane’s ability to understand its surroundings.

Maxime Gariel

Maxime Gariel is the CTO of Xwing, a San Francisco based startup whose mission is to dramatically increase human mobility using fully autonomous aerial vehicles. Xwing is developing a Detect-And-Avoid system for unmanned and remotely piloted vehicles. Maxime is a pilot but he is passionate about making airplanes fly themselves.

Maxime joined Xwing from Rockwell Collins where he was a Principal GNC Engineer. He worked on autonomous aircraft projects including DARPA Gremlins and the AgustaWestland SW4 Solo autonomous helicopter. Before becoming Chief Engineer of the SW4 Solo’s flight control system, he was in charge of the system architecture, redundancy, and safety for the project.

Before Rockwell Collins, he worked on ADS-B based conflict detection as a postdoc at MIT and on autoland systems for airliners at Thales. Maxime earned his MS and PhD in Aerospace Engineering from Georgia Tech and his BS from ISAE-Supaéro (France).

Links



tags: , , , , , , ,


Abate De Mey Founder of Fluid Dev, Hiring Platform for Robotics
Abate De Mey Founder of Fluid Dev, Hiring Platform for Robotics





Related posts :



MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by

RoboCup humanoid league: Interview with Jasper Güldenstein

We talked to Jasper Güldenstein about how teams transferred developments from the virtual humanoid league to the real-world league.
20 September 2022, by and

Integrated Task and Motion Planning (TAMP) in robotics

In this post we will explore a few things that differentiate TAMP from “plain” task planning, and dive into some detailed examples with the pyrobosim and PDDLStream software tools.
16 September 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association