Robohub.org
ep.

237

podcast
 

Deep Learning in Robotics with Sergey Levine

by
24 June 2017



share this:


In this episode, Audrow Nash interviews Sergey Levine, assistant professor at UC Berkeley, about deep learning on robotics. Levine explains what deep learning is and he discusses the challenges of using deep learning in robotics. Lastly, Levine speaks about his collaboration with Google and some of the surprising behavior that emerged from his deep learning approach (how the system grasps soft objects).

In addition to the main interview, Audrow interviewed Levine about his professional path. They spoke about what questions motivate him, why his PhD experience was different to what he had expected, the value of self-directed learning,  work-life balance, and what he wishes he’d known in graduate school.

A video of Levine’s work in collaboration with Google.

 

Sergey Levine

Sergey Levine is an assistant professor at UC Berkeley. His research focuses on robotics and machine learning. In his PhD thesis, he developed a novel guided policy search algorithm for learning complex neural network control policies, which was later applied to enable a range of robotic tasks, including end-to-end training of policies for perception and control. He has also developed algorithms for learning from demonstration, inverse reinforcement learning, efficient training of stochastic neural networks, computer vision, and data-driven character animation.

 

 

Links



tags: , , , , ,


Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast
Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast





Related posts :



Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

In this episode, Audrow Nash speaks to Maria Telleria, who is a co-founder and the CTO of Canvas. Canvas makes a drywall finishing robot and is based in the Bay Area. In this interview, Maria talks ab...
21 June 2022, by and

Coffee with a Researcher (#ICRA2022)

As part of her role as one of the IEEE ICRA 2022 Science Communication Awardees, Avie Ravendran sat down virtually with a few researchers from academia and industry attending the conference.

Seeing the robots at #ICRA2022 through the eyes of a robot

Accessbility@ICRA2022 and OhmniLabs provided three OhmniBots for the conference, allowing students, faculty and interested industry members to attend the expo and poster sessions.
17 June 2022, by

Communicating innovation: What can we do better?

The question on what role communications play in forming the perception of innovative technology was discussed in this workshop. Experts explained how the innovation uptake should be supported by effective communication of innovations: explaining the benefits, tackling risks and fears of the audiences, and taking innovation closer to the general public.
15 June 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association