Robohub.org
 

Flying insects and robots


by
24 February 2013



share this:

TED just released an excellent talk by Michael Dickinson from the University of Washington about how flies fly.

For years now, roboticists and biologists have been working together to understand how natural and man-made systems fly. We actually organized a conference on that topic in 2007 called Flying Insects and Robots, where Dickinson was one of the keynote speakers. The questions that most often arise are “how do you build a machine that flies” and “how do you control the behavior of these flyers”?

To tackle the first question, Dickinson’s lab built the Dynamically-Scaled Flapping Robot, or Robofly. The video below shows its assembly, but you can see it in action in his TED talk. The robotic model had a 60 cm wingspan, could flap around 5 times a second, and was immersed in 2 tons of mineral oil. By measuring instantaneous forces and flow patterns, his lab was able to explore aerodynamics of flapping flight.

To answer the second question, his lab uses high-tech fly arenas (fly-o-rama, fly-o-vision and rock-n-roll arena) that control the visual surrounding of the fly and record behavioral and neuronal activity. Insight gathered from such experiments, for example on how flies use optic flow to navigate an environment, have inspired a large number of robotic systems. Optic flow can be understood as the speed at which an image moves on the surface of your eye. If you’re in a car, looking at a distant mountain, the image of the mountain will move very little on your retina. If you are about to slam into a wall, the image of the wall will expand very rapidly. Large optic flow can tell you that an object is close. Optic flow is interesting for robots because it only requires very simple sensors (see Centeye sensor below) and processing.

The lab where I worked before at EPFL had lots of examples of how simple flying robots could use optic flow for 3D obstacle avoidance. The video below shows a flying wing that uses optic flow sensors found in your typical computer mouse to avoid the ground and obstacles.

Finally, going back to biology, one of Dickinson’s recent papers explores the reaction of real flies to moving objects, in this case a fly-sized robot (flyatar). Results showed that, similar to interactions between pairs of flies, walking female flies freeze in response to objects that move from back-to-front, wherease they ignore objects that move from front-to-back.

Here is a small video of the setup showing a flyatar tracking a fly, or being controlled by a joystick:

You can check Michael Dickinson’s lab website for more fly related material.



tags: , , , , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence