Robohub.org
 

Quadrotor automatically recovers from failure or aggressive launch, without GPS

Credit: Robotics & Perception Group, University of Zurich.

Photo credit: Robotics & Perception Group, University of Zurich.

When a drone flies close to a building, it can temporarily lose its GPS signal and position information, possibly leading to a crash. To ensure safety, a fall-back system is needed to help the quadrotor regain stable flight as soon as possible. We developed a new technology that allows a quadrotor to automatically recover and stabilize from any initial condition without relying on external infrastructure like GPS. The technology allows the quadrotor system to be used safely both indoors and out, to recover stable flight after a GPS loss or system failure. And because the recovery is so quick, it even works to recover flight after an aggressive throw, allowing you to launch a quadrotor simply by tossing it in the air like a baseball.

How it works

Photo credit: Robotics & Perception Group, University of Zurich.

Photo credit: Robotics & Perception Group, University of Zurich.

Our quadrotor is equipped with a single camera, an inertial measurement unit, and a distance sensor (Teraranger One). The stabilization system of the quadrotor emulates the visual system and the sense of balance within humans. As soon as a toss or a failure situation is detected, our computer-vision software analyses the images for distinctive landmarks in the environment, and uses these to restore balance.

All the image processing and control runs on a smartphone processor on board the drone. The onboard sensing and computation renders the drone safe and able to fly unaided. This allows the drone to fulfil its mission without any communication or interaction with the operator.

The recovery procedure consists of multiple stages. First, the quadrotor stabilizes its attitude and altitude, and then it re-initializes its visual state-estimation pipeline before stabilizing fully autonomously. To experimentally demonstrate the performance of our system, in the video we aggressively throw the quadrotor in the air by hand and have it recover and stabilize all by itself. We chose this example as it simulates conditions similar to failure recovery during aggressive flight. Our system was able to recover successfully in several hundred throws in both indoor and outdoor environments.

More info: Robotics and Perception Group, University of Zurich.


References

M. Faessler, F. Fontana, C. Forster, D. Scaramuzza. Automatic Re-Initialization and Failure Recovery for Aggressive Flight with a Monocular Vision-Based Quadrotor. IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015.

M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, D. Scaramuzza. Autonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor Micro Aerial Vehicle. Journal of Field Robotics, 2015.



If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.

 



tags: , , , , , , , ,


Matthias Fässler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.
Matthias Fässler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.

Flavio Fontana is a PhD candidate at the Robotics and Perception Group.
Flavio Fontana is a PhD candidate at the Robotics and Perception Group.

Elias Müggler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.
Elias Müggler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.

Christian Forster is a PhD student at the Robotics and Perception Group.
Christian Forster is a PhD student at the Robotics and Perception Group.

Davide Scaramuzza is Assistant Professor of Robotics at the University of Zurich.
Davide Scaramuzza is Assistant Professor of Robotics at the University of Zurich.





Related posts :



MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by

RoboCup humanoid league: Interview with Jasper Güldenstein

We talked to Jasper Güldenstein about how teams transferred developments from the virtual humanoid league to the real-world league.
20 September 2022, by and

Integrated Task and Motion Planning (TAMP) in robotics

In this post we will explore a few things that differentiate TAMP from “plain” task planning, and dive into some detailed examples with the pyrobosim and PDDLStream software tools.
16 September 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association