Robohub.org
 

ShanghAI Lectures 2012: Lecture 10 “How the body shapes the way we think”

by
06 May 2013



share this:
ShanghAIGlobeColorSmall

This concludes the ShanghAI Lecture series of 2012. After a wrap-up of the class, we announce the winners of the EmbedIT and NAO competitions and end with an outlook of the future of the ShanghAI Lectures.

Then there are three guest lectures: Tamás Haidegger (Budapest University of Technology and Economics) on surgical robots, Aude Billard (EPFL) on how the body shapes the way we move (and how humans can shape the way robots move), and Jamie Paik (EPFL) on soft robotics.

The ShanghAI Lectures are a videoconference-based lecture series on Embodied Intelligence run by Rolf Pfeifer and organized by me and partners around the world.

 

Tamás Haidegger: Human Skills for Robots: Transferring Human Knowledge and Capabilities to Robotic Task Execution in Surgery

Almost 90 years ago, the idea of telesurgery was born, along with the initial concept of robots. From the early 1970s, researchers were focusing on robotic telepresence, to empower surgeons to treat patients at a distance. The first systems appeared over 20 years ago, and robotic surgery has quickly become a standard-of-care for certain procedures—at least in the USA. Over the decades, the control concept remained the same; a human surgeon guiding the robotic tools based on real-time sensory feedback. However, from the beginning of the development, the more exciting (and sometimes frightening) questions have been linked to machine learning, AI and automated surgery. In the true sense of automation, there have only been unclear reports of one single robotically planned and executed surgery so far, despite the fact that many research groups are working on the problem. This talk introduces the major efforts currently undertaken in centers of excellence around the globe to transfer the incredibly diverse and versatile human cognition into the domain of surgical robotics.

References

  • P. Kazanzides, G. Fichtinger, G. D. Hager, A. M. Okamura, L. L. Whitcomb, and R. H. Taylor, “Surgical and Interventional Robotics: part I,” IEEE Robotics and Automation Magazine (RAM), vol. 15, no. 2, pp. 122–130, 2008.
  • G. Fichtinger , P. Kazanzides, G. D. Hager, A. M. Okamura, L. L. Whitcomb, and R. H. Taylor, “Surgical and Interventional Robotics: part II,” IEEE Robotics and Automation Magazine (RAM), vol. 15, no. 3, pp. 94–102, 2008.
  • G. Hager, A. Okamura, P. Kazanzides, L. Whitcomb, G. Fichtinger, and R. Taylor, “Surgical and Interventional Robotics: part III,” IEEE Robotics and Automation Magazine (RAM), vol. 15, no. 4, pp. 84–93, 2008.
  • C. E. Reiley, H. C. Lin, D. D. Yuh, G. D. Hager. “A Review of Methods for Objective Surgical Skill Evaluation,” Surgical Endoscopy, vol. 25, no. 2, pp. 356–366, 2011.

 

Aude Billard: How the body shapes the way we move and how humans can shape the way robots move

In this lecture Aude Billard advocates that it is advantageous to have robots move with a dynamics that resembles the dynamics of motion of natural bodies, even if the robots do not resemble humans in their physical appearance (e.g. industrial robots). This will make their motion more predictable for humans and hence make the interaction safer. She then briefly presents current approaches to modeling the dynamics of human motion in robots.

A survey of issues on robot learning from human demonstration can be found at:
http://www.scholarpedia.org/article/Robot_learning_by_demonstration

 

Jamie Paik: SOFT Robot Challenge and 
Robogamis



tags: , , , , , , , , , , , , , , , , , , , ,


Nathan Labhart Co-organizing the ShanghAI Lectures since 2009.
Nathan Labhart Co-organizing the ShanghAI Lectures since 2009.





Related posts :



Tesla’s Optimus robot isn’t very impressive – but it may be a sign of better things to come

Musk has now unveiled a prototype of the robot, called Optimus, which he hopes to mass-produce and sell for less than US$20,000 (A$31,000).
04 October 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
03 October 2022, by and

Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association