news    views    talk    learn    |    about    contribute     republish     crowdfunding     archives     events


tutorials, lectures and more

Robot butchers, cake decorator and pizza-baking manipulators. Here are our six favorite robot applications which are changing the food industry.

by   -   August 4, 2017

It was a return to the source for RoboCup 2017, which took place last week in Nagoya Japan, 20 years after its launch in the same city.

We are only in the earliest stages of so-called algorithmic regulation – intelligent machines deploying big data, machine learning and artificial intelligence (AI) to regulate human behaviour and enforce laws – but it already has profound implications for the relationship between private citizens and the state.

by Nicholas Charron

The need for fast, accurate 3D mapping solutions has quickly become a reality for many industries wanting to adopt new technologies in AI and automation. New applications requiring these 3D mapping platforms include surveillance, mining, automated measurement & inspection, construction management & decommissioning, and photo-realistic rendering. Here at Clearpath Robotics, we decided to team up with Mandala Robotics to show how easily you can implement 3D mapping on a Clearpath robot.

Update: The response to Tertill’s crowdfunding campaign has amazed and delighted us! Pledges totalling over $250,000 have come from 1000+ backers. We’re shipping to all countries, with over a fifth of Tertill’s supporters coming from outside the United States. But the end is near; Tuesday (11 July) is the last full day of the campaign. After that Tertill’s discounted campaign price will no longer be available and delivery in time for next year’s (northern hemisphere) growing season cannot be assured.

Franklin Robotics has launched a Kickstarter campaign for Tertill, their solar-powered, garden-weeding robot.

By Tully Foote

We are excited to show off a simulation of a Prius in Mcity using ROS Kinetic and Gazebo 8. ROS enabled the simulation to be developed faster by using existing software and libraries. The vehicle’s throttle, brake, steering, and transmission are controlled by publishing to a ROS topic. All sensor data is published using ROS, and can be visualized with RViz.

by   -   June 30, 2017

The Robot Academy is a new learning resource from Professor Peter Corke and the Queensland University of Technology (QUT), the team behind the award-winning Introduction to Robotics and Robotic Vision courses. There are over 200 lessons available, all for free.

The lessons were created in 2015 for the Introduction to Robotics and Robotic Vision courses. We describe our approach to creating the original courses in the article, An Innovative Educational Change: Massive Open Online Courses in Robotics and Robotic Vision. The courses were designed for university undergraduate students but many lessons are suitable for anybody, as you can easily see the difficulty rating for each lesson. Below are lessons from inverse kinematics and robot motion.

Figure 8: Example of a 15 robot swarm of GRITSBots on the arena surface of the second instantiation of the Robotarium.

When developing algorithms for coordinating the behaviors of swarms of robots it is crucial that the algorithms are actually deployed and tested on real hardware platforms. Unfortunately, building and maintaining a swarm robotics testbed is a resource-intense proposition and, as a consequence, resources rather than ideas tend to be the bottleneck and swarm robotics research does not progress at the rate it could. The Robotarium sets out to remedy this problem by providing remote access to a large team of robots, where users can upload their code, run the experiments remotely, and get the scientific data back. This article describes the structure and architecture of the Robotarium as well as discusses what constitutes an effective, remotely accessible research platform.

This paper won the IEEE Robotics & Automation Best Multi-Robot Systems Award at ICRA 2017.

by   -   June 28, 2017

MATLAB© is a programming language and environment designed for scientific computing. It is one of the best languages for developing robot control algorithms and is widely used in the research community. While it is often thought of as an offline programming language, there are several ways to interface with it to control robotic hardware ‘in the loop’. As part of our own development we surveyed a number of different projects that accomplish this by using a message passing system and we compared the approaches they took. This post focuses on bindings for the following message passing frameworks: LCM, ROS, DDS, and ZeroMQ.

Snake robot at the Robotics institute. Credit: Jiuguang Wang/Flickr

The biblical narrative of the Garden of Eden describes how the snake became the most cursed of all beasts: “you shall walk on your belly, and you shall eat dust all the days of your life.” The reptile’s eternal punishment is no longer feared but embraced for its versatility and flexibility. The snake is fast approaching as one of the most celebrated robotic creatures for roboticists worldwide in out maneuvering rovers and humanoids.

Why are spiders’ webs so complex? Might they have other functionalities besides being a simple trap? One of the most interesting answers to this question is that spiders might use their webs as computational devices.

Driverless car merging into traffic. How big of a gap between vehicles is acceptable? Image credit: Jordan Collver

I’m examining the perception of autonomous cars using hypothetical scenarios. Each of the hypothetical scenarios is accompanied with an image to help illustrate the scene — using grey tones and nondescript human-like features — along with the option to listen to the question spoken out loud to fully visualise an association. 

If you live in the UK, you can take this survey and help contribute to my research!

by   -   June 21, 2017

To celebrate 20 years of RoboCup, the Federation is launching a video series featuring each of the leagues. In our final set of videos, we are featuring the Junior league.

The Baxter robot hands off a cable to a human collaborator — an example of a co-robot in action. Photo credit: Aaron Bestick, UC Berkeley.

The key takeaway from Tuesday’s RobotLabNYC forum, on “Exploring The Autonomous Future,” was humans are the key to robot adoption. Dr. Howard Morgan of First Round Capital expressed to the audience of more than 100 innovators working within the automation ecosystem, the necessity of embracing “entrepreneurial marketing” to reach customers. Tom Ryden echoed Morgan’s sentiment in his presentation about Mass Robotics, conveying his startups’ frustrations with the pace of adoption. Dr. Eric Daimler, formerly of the Obama Administration, concluded the evening succinctly by exclaiming, “we only adopt what we trust.” Trust is key for crossing the chasm.

Prof. Pierre Dillenbourg and the team from the Computer-Human Interaction in Learning and Instruction (CHILI) Lab, explain how they are building robots to use in the classrooms of tomorrow. It is CHILI’s goal to deeply integrate Human-Computer Interaction (HCI) and learning sciences, especially in addressing practical problems in learning, teaching, and instruction.

Tensegrity Control
August 18, 2017

Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign