Robohub.org
 

Cell origami


by
19 February 2013



share this:

A couple years back, a team from Harvard and MIT developed a sheet of “programmable matter” that could fold into 3D structures. The hope being that you could one day produce a variety of objects on demand. If you need a hammer, your programmable matter would reconfigure to make one. The concept, coined “Robotic Origami”, was published in the renowned journal PNAS.

At the International Conference on Intelligent Robots and Systems (IROS) last October, I saw an excellent talk by Dr. Kaori Kuribayashi-Shigetomi from the University of Tokyo about “Cell Origami”. Her work, which was recently published in PLOS One, uses the natural pulling force that cells produce on surfaces where they grow to fold smartly cut and positioned 2D sheets into desired 3D structures. The process, demonstrated in the video below, shows cells grown on top of engineered microplates fixed to a flat surface. To fold the structure, simply detach the microplates from the surface and allow the cells to pull them into a 3D structure. The cells in this case act like a rubber-band. Such 3D structures could be useful for a variety of applications including tissue engineering or 3D assembly at the microscale. By using the natural beats produced by heart cells (cardiomyocytes) to actuate the microplates, she is then able to make a “flapping robot”. The end of the video shows that these 3D structures can be mass produced with 1200 structures folded per cm2.



tags: , , , , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence