Robohub.org
 

Cell origami

by
19 February 2013



share this:

A couple years back, a team from Harvard and MIT developed a sheet of “programmable matter” that could fold into 3D structures. The hope being that you could one day produce a variety of objects on demand. If you need a hammer, your programmable matter would reconfigure to make one. The concept, coined “Robotic Origami”, was published in the renowned journal PNAS.

At the International Conference on Intelligent Robots and Systems (IROS) last October, I saw an excellent talk by Dr. Kaori Kuribayashi-Shigetomi from the University of Tokyo about “Cell Origami”. Her work, which was recently published in PLOS One, uses the natural pulling force that cells produce on surfaces where they grow to fold smartly cut and positioned 2D sheets into desired 3D structures. The process, demonstrated in the video below, shows cells grown on top of engineered microplates fixed to a flat surface. To fold the structure, simply detach the microplates from the surface and allow the cells to pull them into a 3D structure. The cells in this case act like a rubber-band. Such 3D structures could be useful for a variety of applications including tissue engineering or 3D assembly at the microscale. By using the natural beats produced by heart cells (cardiomyocytes) to actuate the microplates, she is then able to make a “flapping robot”. The end of the video shows that these 3D structures can be mass produced with 1200 structures folded per cm2.



tags: , , , , , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



An inventory of robotics roadmaps to better inform policy and investment

Silicon Valley Robotics in partnership with the Industrial Activities Board of the IEEE Robotics and Automation Society, is compiling an up to date resource list of various robotics, AIS and AI roadmaps, national or otherwise.
29 November 2021, by

Robots can be companions, caregivers, collaborators — and social influencers

People are hardwired to respond socially to technology that presents itself as even vaguely social. While this may sound like the beginnings of a Black Mirror episode, this tendency is precisely what allows us to enjoy social interactions with robots and place them in caregiver, collaborator or companion roles.
26 November 2021, by

Interview with Tao Chen, Jie Xu and Pulkit Agrawal: CoRL 2021 best paper award winners

The award-winning authors describe their work on a system for general in-hand object re-orientation.
24 November 2021, by
ep.

341

podcast

How Simbe Robotics is Innovating in Retail, with Brad Bogolea

Brad Bogolea discusses the innovation behind Tally, the autonomous robot from Simbe Robotics. Tally collects real-time analytics inside retail stores to improve the customer shopping experience, as well as the efficiency of managing the store.
23 November 2021, by

Top 10 recommendations for a video gamer who you’d like to read (or even just touch) a book

Here is the Robotics Through Science Fiction Top 10 recommendations of books that have robots plus enough world building to rival Halo or Doom and lots of action or puzzles to solve. What’s even cooler is that you can cleverly use the “Topics” links to work in some STEM talking points.
20 November 2021, by

Top tweets from the Conference on Robot Learning #CoRL2021

In this post we bring you a glimpse of the conference through the most popular tweets about the conference written last week. Cool robot demos, short and sweet explanation of papers and award finalists to look forward to next year's edition.
19 November 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association