Robohub.org
 

Cell origami

by
19 February 2013



share this:

A couple years back, a team from Harvard and MIT developed a sheet of “programmable matter” that could fold into 3D structures. The hope being that you could one day produce a variety of objects on demand. If you need a hammer, your programmable matter would reconfigure to make one. The concept, coined “Robotic Origami”, was published in the renowned journal PNAS.

At the International Conference on Intelligent Robots and Systems (IROS) last October, I saw an excellent talk by Dr. Kaori Kuribayashi-Shigetomi from the University of Tokyo about “Cell Origami”. Her work, which was recently published in PLOS One, uses the natural pulling force that cells produce on surfaces where they grow to fold smartly cut and positioned 2D sheets into desired 3D structures. The process, demonstrated in the video below, shows cells grown on top of engineered microplates fixed to a flat surface. To fold the structure, simply detach the microplates from the surface and allow the cells to pull them into a 3D structure. The cells in this case act like a rubber-band. Such 3D structures could be useful for a variety of applications including tissue engineering or 3D assembly at the microscale. By using the natural beats produced by heart cells (cardiomyocytes) to actuate the microplates, she is then able to make a “flapping robot”. The end of the video shows that these 3D structures can be mass produced with 1200 structures folded per cm2.



tags: , , , , , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Tesla’s Optimus robot isn’t very impressive – but it may be a sign of better things to come

Musk has now unveiled a prototype of the robot, called Optimus, which he hopes to mass-produce and sell for less than US$20,000 (A$31,000).
04 October 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
03 October 2022, by and

Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association