Robohub.org
ep.

344

podcast
 

Learning for Collaboration, Not Competition with Jakob Foerster


by
25 January 2022



share this:


Jakob Foerster an accredited Machine Learning Research Scientist who has been at the forefront of research on Multi-Agent Learning speaks with interviewer Kegan Strawn.

Dr. Foerster explains why incorporating uncertainty into multi-agent interactions is essential to creating robust algorithms that can operate not only in games but in real-world applications.

Jakob Foerster
Jakob Foerster is an Associate Professor at the University of Oxford. His papers have gained prestigious awards at top machine learning conferences (ICML, AAAI) and have helped push deep multi-agent reinforcement learning to the forefront of AI research.

photo of Jakob Foerster

Jakob previously worked at Facebook AI Research and received his Ph.D. from the University of Oxford under the supervision of Shimon Whiteson. During his Ph.D., Jakob also interned at Google Brain, OpenAI, and DeepMind.

Jakob’s research interests span Deep Multi-Agent Reinforcement Learning, Human-AI Coordination, Emergent Communication, Search, Planning, and Game Theory.

Links



tags: , , , , , , ,


Kegan Strawn





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence