news    views    talk    learn    |    about    contribute     republish     crowdfunding     archives     events

CSAIL

MIT spinout New Valence Robotics (NVBOTS) has brought to market the only fully automated commercial 3-D printer that’s equipped with cloud-based queuing and automatic part removal, making print jobs quicker and easier for multiple users, and dropping the cost per part.

If you haven’t used a 3-D printer yet, you may be surprised to learn that it isn’t fully automated the way your office’s inkjet is.

by   -   April 12, 2017
MIT Professor Daniela Rus, director of CSAIL, said the goal of a new SystemsThatLearn@CSAIL initiative is “to create a new generation of AI tools that are deeply rooted in systems.” Photo: Jason Dorfman/MIT CSAIL

From self-driving cars to the internet of things, artificial intelligence (AI) has reached new levels of sophistication in recent years. With that in mind, this week MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) launched an industry collaboration focused on using machine learning to create functional human-like systems.

by   -   March 27, 2017

New 3-D-printed device mimics the goldbug beetle, which changes color when prodded.

by   -   March 22, 2017

Microfluidic device generates passive hydraulic power, may be used to make small robots move.

by   -   March 17, 2017

In the latest issue of the journal Autonomous Robots, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory and their colleagues present a new technique for preventing malicious hackers from commandeering robot teams’ communication networks. The technique could provide an added layer of security in systems that encrypt communications, or an alternative in circumstances in which encryption is impractical.

by   -   March 6, 2017
The feedback system enables human operators to correct the robot’s choice in real-time – Jason Dorfman, MIT CSAIL

For robots to do what we want, they need to understand us. Too often, this means having to meet them halfway: teaching them the intricacies of human language, for example, or giving them explicit commands for very specific tasks. But what if we could develop robots that were a more natural extension of us and that could actually do whatever we are thinking?

by   -   January 24, 2017
A new system called Data Civilizer automatically finds connections among many different data tables and allows users to perform database-style queries across all of them. The results of the queries can then be saved as new, orderly data sets that may draw information from dozens or even thousands of different tables.
A new system called Data Civilizer automatically finds connections among many different data tables and allows users to perform database-style queries across all of them. The results of the queries can then be saved as new, orderly data sets that may draw information from dozens or even thousands of different tables.

The age of big data has seen a host of new techniques for analyzing large data sets. But before any of those techniques can be applied, the target data has to be aggregated, organized, and cleaned up.

That turns out to be a shockingly time-consuming task. In a 2016 survey, 80 data scientists told the company CrowdFlower that, on average, they spent 80 percent of their time collecting and organizing data and only 20 percent analyzing it.

by   -   December 5, 2016
PhD student Tao Du watching the bunnycopter take off . Image credit: Jason Dorfman, MIT CSAIL
PhD student Tao Du watching the bunnycopter take off . Image credit: Jason Dorfman, MIT CSAIL

This fall’s new FAA regulations have made drone flight easier than ever for both companies and consumers. But what if the drones out on the market aren’t exactly what you want?

A new system from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is the first to allow users to design, simulate and build their own custom drone. Users can change the size, shape and structure of their drone based on the specific needs they have for payload, cost, flight time, battery usage and other factors.

by   -   October 18, 2016

Longtime professor and beloved advisor was known for advances in experimental and theoretical studies of vision, perception, and cognition.

by   -   October 3, 2016

By “programming” customized soft materials, the CSAIL team can 3-D print safer, nimbler, more durable robots.

by   -   September 21, 2016
From L-R: PhD Fadel Adib, PhD Mingmin Zhao and Professor Dina Katabi demonstrating different 'emotions' like the picture. Credit: Jason Dorfman, MIT CSAIL
From L-R: PhD Fadel Adib, PhD Mingmin Zhao and Professor Dina Katabi demonstrating different ’emotions’ like the picture. Credit: Jason Dorfman, MIT CSAIL

By measuring your heartbeat and breath, this device from MIT’s Computer Science and Artificial Intelligence Lab can tell if you’re excited, happy, angry or sad
.

by   -   April 28, 2016

Team will program NASA’s “Valkyrie” for tasks aimed at future space missions.

by   -   April 1, 2016

System from MIT’s Computer Science and Artificial Intelligence Lab enables single WiFi access point that can locate users within tens of centimeters.

by   -   February 18, 2016

At the annual meeting of the Association for the Advancement of Artificial Intelligence last weekend, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) presented a new way of modeling robot collaboration that reduces the need for communication by 60 percent. They believe that their model could make it easier to design systems that enable humans and robots to work together — in, for example, emergency-response teams.

by   -   January 19, 2016

Getting drones to fly around without hitting things is no small task. Obstacle-detection and motion-planning are two of computer science’s trickiest challenges because of the complexity involved in creating real-time flight plans that avoid obstacles and handle surprises like wind and weather. In a pair of projects announced this week, CSAIL researchers demonstrated software that allow drones to stop on a dime to make hairpin movements over, under, and around some 26 distinct obstacles in a simulated “forest.”



Deep Learning in Robotics
June 24, 2017


Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign