news    views    talk    learn    |    about    contribute     republish     crowdfunding     archives     events

Robohub Focus on High-risk High-reward

interview by   -   May 1, 2015

In this episode, Audrow Nash interviews Todd Hylton, Senior Vice President at Brain Corporation, about neuromorphic computers. They discuss the robotics development board bStem, which approximates a neuromorphic computer, as well as the eyeRover: a small balancing robot that demonstrates how the bStem can be used in mobile robots.

Dmitry Grishin at the Skolkovo Robotics conference in Russia.
Dmitry Grishin at the Skolkovo Robotics conference in Russia.

As part of our series on high-risk, high-reward robotics, and as a follow-up to his recent Robot’s Podcast interview, I asked entrepreneur and venture capitalist Dmitry Grishin to talk to us about how he manages risk in his global investment company Grishin Robotics. 

Based on a media rountable discussion with DRC Program Manager Gill Pratt and CEO of the Open Source Robotics Foundation Brian Gerkey.

The Fukushima Daiichi Nuclear disaster was a wake-up call to the robotics community. In Japan, many asked why a country known for its cutting-edge robotics sector was unable to respond to the emergency. Worldwide, robotics experts pointed to the event as a real-world test of what robots can and cannot do.

Whether man-made or natural — or like Fukushima, a combination of the two — major catastrophic events, while rare, are becoming increasingly costly as human populations worldwide move to urban areas. This is why, in an effort to spur the development of agile humanoid first-responders, the US Department of Defense’s strategic plan identifies disaster response as a priority area, and why it is funnelling tens of millions of dollars into the DARPA Robotics Challenge.

by   -   July 22, 2013

A week ago the DARPA Robotics Challenge unveiled the ATLAS humanoid robot, which will be used by seven competing teams. Developed by Boston Dynamics, ATLAS is an imposing 1.8m 150Kg bipedal humanoid robot, powered via a tethered cable. Another six teams have designed their own robots, and interestingly five of these are humanoid, and one a four-limbed simian-inspired robot.

In the euRathlon project we are taking a different approach in that we don’t expect, or require, the competing robots to be humanoid or zoomorphic.

As part of our series on ‘High-Risk / High-Reward’ robotics, I interviewed SRI International‘s Director of Robotics, Rich Mahoney, who’s role there is to help identify important emerging robotics technologies, align them with the needs of funding sources, and bring them successfully to market.

by   -   July 17, 2013

With the rapid economic development of the last twenty years resulting in the accumulation of great wealth, China urgently feels the need to move from a manufacturing-driven economy to an innovation-driven one. As a result, China is supporting many bold research initiatives in an effort to develop and attract the highly skilled individuals who will be needed to lead this transition. Thanks to recent dramatic developments in hardware and software, economists anticipate that the Chinese robotics industry will meet its spring season this year.

Neurorobotics is one of the most ambitious fields in robotics and will play a major role in the newly announced Human Brain Project. This project was selected by the European Commission as a flagship project and will receive a prospected funding of 1 billion euro for a runtime of 10 years. The goal of the Human Brain Project is to pull together the highly fragmented knowledge in the neurosciences and to reconstruct the brain, piece by piece, in supercomputer-based models and simulations. It should lay the technical foundations for a new model of brain research that is based on Information and Communications Technologies (ICT), driving integration between data and knowledge from different disciplines, and catalyzing a community effort to achieve a new understanding of the brain, new treatments for brain disease and new brain-like computing technologies.

Over the last few years, there has been increasing talk about the potential of agriculture as a market for robotics. Speaking about future markets for unmanned aerial systems in a recent presentation at Maker Faire, DIY Drones founder and CEO of 3D Robotics Chris Anderson characterized agriculture as the “biggest economic potential with the lowest regulatory barriers,” and talked about the important role they can play in supplying much needed data to farmers, stating that “agriculture is a big data problem without the big data.”

For many people, the term “innovation” implies having a great idea, and hoping that somehow it will take off. According to H. Chesbrough, this is clearly insufficient, and in his definition, he is very specific and demanding: an innovation is an invention that has been developed into a novel product or service, and which is creating economic value. Or simply stated: Without market success, no innovation has happened!

by   -   July 9, 2013

Often funding sources – the groups taking the risk – are not the beneficiaries of the rewards of the venture. Intuitive Surgical is an example.

NSF, DARPA and NASA funded a project to solve a very real problem: providing medical attention to Americans in remote places such as space, war or scientific expeditions. The initial concept was to be a telepresence project but with no known solution. That was the high-risk research project funded by the three agencies.

by   -   July 8, 2013

Over the last 20 years or so, a sense that science has become conservative or incrementalist has developed, and calls for change in the approaches to public funding of research have been heard from various quarters. Several notions have been suggested of what should be supported instead of “normal science” or “incremental innovation.” Among them we have heard calls for more “high risk-high reward” research, or for more “highly creative” science, or for more “cutting edge” or “frontier” research and, more recently in language adopted by funding agencies, that more “transformational research” is needed.

by   -   July 3, 2013

National Science Foundation (NSF) efforts to develop a mechanism to fund research proposals that had a high risk of failure, but which also had the potential for high return, began in 1980. In that year a task force was created by the NSF Advisory Council to look at the issue of “highly creative or innovative” proposals for which there was “a high risk of failure.”

The task force’s report identified two significant hurdles the NSF needed to overcome to support high risk/high return proposals:

by   -   July 2, 2013

On June 17, 2013, Astronaut Chris Cassidy successfully drove a K10 rover on earth, via remote connection from the Surface Telerobotics Workbench on the International Space Station, showing that robots deployed to explore Mars or the far side of the moon could be remotely controlled by astronauts in space during future deep-space missions. Telerobotics, which involves human operators remotely controlling robotic arms, rovers and other devices in space, is one means of reducing risk in dull, dangerous or dirty tasks as humans explore space. 

NASA has a long history of playing for high stakes; think of the 7 minutes of terror Curiosity descent to Mars, Spirit & Opportunity, and indeed, the entire space race. Yet when human lives and millions of dollars in technology are invested, it’s critical to keep risk at a minimum. As part of our series on ‘High-Risk / High-Reward’ robotics, we asked Dr. Terry Fong of the NASA Ames Intelligent Robotics Group, to describe how NASA’s telerobotics initiatives help mitigate risk in space missions. – Robohub Editors

Over the past two decades, robotic planetary exploration has generated an incredible wealth of knowledge about our neighbors in the Solar System. We now realize that celestial bodies within our reach can provide resources such as water, minerals, and metals, essential for sustaining and supporting robotic and human exploration of the Solar System. It is only matter of time before “living off the land” exploration enabled by in-situ resource utilization (ISRU) becomes a reality.  The Solar System offers almost unlimited resources, but the difficult part is accessing them. Thus, if the cost of mining and processing can be reduced, some of the minerals that are in high demand on Earth could in fact be brought back and sold for commercial gain.

Kickstart Accelerator
April 17, 2017

Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign