news    views    podcast    learn    |    about    contribute     republish    

Articles

by , and   -   October 6, 2018

The deployment of connected, automated, and autonomous vehicles presents us with transformational opportunities for road transport. These opportunities reach beyond single-vehicle automation: by enabling groups of vehicles to jointly agree on maneuvers and navigation strategies, real-time coordination promises to improve overall traffic throughput, road capacity, and passenger safety. However, coordinated driving for intelligent vehicles still remains a challenging research problem, and testing new approaches is cumbersome. Developing true-scale facilities for safe, controlled vehicle testbeds is massively expensive and requires a vast amount of space. One approach to facilitating experimental research and education is to build low-cost testbeds that incorporate fleets of down-sized, car-like mobile platforms.

by   -   September 18, 2018

The multi-joint soft exosuit consists of textile apparel components worn at the waist, thighs and calves that guide mechanical forces from an optimized mobile actuation system attached to a rucksack via cables to the ankle and hip joints. In addition, a new tuning method helps personalize the exosuit’s effects to wearers’ specific gaits. Credit: Harvard Biodesign Lab

By Benjamin Boettner

In the future, smart textile-based soft robotic exosuits could be worn by soldiers, fire fighters and rescue workers to help them traverse difficult terrain and arrive fresh at their destinations so that they can perform their respective tasks more effectively. They could also become a powerful means to enhance mobility and quality of living for people suffering from neurodegenerative disorders and for the elderly.

by   -   September 18, 2018

Open-Source Software for robots is a de-facto standard in academia, and its advantages can benefit industrial applications as well. The worldwide ROS-Industrial initiative has been using ROS, the Robot Operating System, to this end.

by   -   September 10, 2018

Applications from 166 companies spread across 12 European countries and myriads of exiting robotics ideas was the beginning of the EU-funded initiative ROBOTT-NET in 2016.

by   -   September 10, 2018

...

In this post, we demonstrate how deep reinforcement learning (deep RL) can be used to learn how to control dexterous hands for a variety of manipulation tasks. We discuss how such methods can learn to make use of low-cost hardware, can be implemented efficiently, and how they can be complemented with techniques such as demonstrations and simulation to accelerate learning.

by   -   August 9, 2018

By John Miller

An earlier version of this post was published on Off the Convex Path. It is reposted here with the author’s permission.

In the last few years, deep learning practitioners have proposed a litany of different sequence models. Although recurrent neural networks were once the tool of choice, now models like the autoregressive Wavenet or the Transformer are replacing RNNs on a diverse set of tasks. In this post, we explore the trade-offs between recurrent and feed-forward models.

Three projects have made the final cut and received funding for a ROBOTT-NET pilot and even further development assistance.

by   -   July 16, 2018

Since programming is an extremely time-consuming business, small and medium-sized enterprises (SME) are often forced to manage without robots. Researchers from Fraunhofer IPA have therefore developed the software RobotKit specially for welding tasks. In an initial test scenario, the kit reduced programming times from 90 down to just 7 minutes.

by   -   June 29, 2018

By Tianhe Yu and Chelsea Finn

Learning a new skill by observing another individual, the ability to imitate, is a key part of intelligence in human and animals. Can we enable a robot to do the same, learning to manipulate a new object by simply watching a human manipulating the object just as in the video below?

by   -   June 1, 2018

By Fisher Yu

TL;DR, we released the largest and most diverse driving video dataset with richannotations called BDD100K. You can access the data for research now at http://bdd-data.berkeley.edu. We haverecently released an arXivreport on it. And there is still time to participate in our CVPR 2018 challenges!

by   -   June 1, 2018

By Vitchyr Pong
You’ve decided that you want to bike from your house by UC Berkeley to the Golden Gate Bridge. It’s a nice 20 mile ride, but there’s a problem: you’ve never ridden a bike before!

The four-legged design of ANYmal allows the robot to conquer difficult terrain such as gravel, sand, and snow. Photo credit: ETH Zurich / Andreas Eggenberger.

ANYbotics led the way in the ICRA 2018 Robot Launch Startup Competition on May 22, 2018 at the Brisbane Conference Center in Australia. Although ANYbotics pitched last out of the 10 startups presenting, they clearly won over the judges and audience. As competition winners, ANYbotics received a $3,000 prize from QUT bluebox, Australia’s robotics accelerator (currently taking applications for 2018!), plus Silicon Valley Robotics membership and mentoring from The Robotics Hub.

by   -   May 25, 2018

An aqua drone developed by the WasteShark project can collect litter in harbors before it gets carried out into the open sea. Image credit – WasteShark

By Catherine Collins

The cost of sea litter in the EU has been estimated at up to €630 million per year. It is mostly composed of plastics, which take hundreds of years to break down in nature, and has the potential to affect human health through the food chain because plastic waste is eaten by the fish that we consume.

by   -   May 25, 2018


The European Robotics Forum 2018 (ERF2018), the most influential meeting of the robotics community in Europe, took place in Tampere on 13-15 March 2018. ERF2018 brought together over 900 leading scientists, companies, and policymakers.

by   -   May 9, 2018

As the vacuum is applied to the flexible material, it becomes stiff and able to support the weight of the drone. Credit: Yashraj Narang

By Leah Burrows

Even octopuses understand the importance of elbows. When these squishy, loose-limbed cephalopods need to make a precise movement — such as guiding food into their mouth — the muscles in their tentacles contract to create a temporary revolute joint. These joints limit the wobbliness of the arm, enabling more controlled movements.

← previous page        ·         next page →



IROS 2018 Exhibition (Part 3 of 3)
January 20, 2019


Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign