Robohub.org
ep.

255

podcast
 

Learning about Legged Locomotion from Birds with Monica Daley


by
04 March 2018



share this:




In this episode, Audrow Nash speaks with Monica Daley about learning from birds about legged locomotion. To do this, Daley analyzes the gaits of guineafowl in various experiments to understand the mechanical principles underlying gaits, such as energetic economy, mechanical limits, and how the birds avoid injury. She then tests her ideas about legged locomotion on legged robots with collaborators, including Jonathan Hurst from Oregon State University. Daley also speaks about her experience with interdisciplinary collaborations. 

Monica Daley

Monica Daley earned an HBSc in Biology with a Chemistry minor at the University of Utah, where she was inspired to pursue an academic career through her research on human locomotor-ventilatory integration with Dennis Bramble and David Carrier. Daley then spent a year as a research technician at the University of Utah, investigating motor control of singing in zebra finches in the lab of Franz Goller. These experiences initiated a long-standing fascination with the interplay of mechanics and neural control.

Daley went on to Harvard University, where she earned her MA and PhD in Organismic and Evolutionary Biology. Her research on muscle-tendon dynamics and biomechanics of avian bipedal locomotion was supported by a prestigious Predoctoral Fellowship award from the Howard Hughes Medical Institute and supervised by Andrew Biewener at the Concord Field Station of Harvard University (CFS Website).

After completing her PhD, Daley was awarded a Research Fellowship by the U.S. National Science Foundation to develop models of the dynamics and control of bipedal locomotion, working with Dan Ferris in the Human Neuromechanics Lab at University of Michigan, in collaboration with Auke Ijspeert in the Biologically Inspired Robotics Group at the Swiss Federal Institute of Technology in Lausanne.

Daley is a faculty member of the Structure and Motion Lab, where she leads research in Comparative Neuromechanics— a field that seeks to understand the interplay of morphology, mechanics and sensorimotor control that influences how animals move through their environment.

 

Links



tags: , , , , ,


Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast
Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast





Related posts :



Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

Human-robot interaction design retreat

  25 Nov 2025
Find out more about an event exploring design for human-robot interaction.

Robot Talk Episode 134 – Robotics as a hobby, with Kevin McAleer

  21 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kevin McAleer from kevsrobots about how to get started building robots at home.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence